V - SEMESTER

Course 14A: Synthetic Organic Chemistry.

Credits: 03

I. Learning Outcomes:

Students after successful completion of the course will be able to:

- 1) Identify the importance of reagents used in the synthesis of organic compounds.
- 2) Acquire knowledge on basic concepts in different types of pericyclic reactions.
- 3) Understand the importance of retro synthesis inorganic chemistry.
- 4) Comprehend the applications of different reactions in synthetic organic chemistry.
- II. Syllabus:

Unit-1:Pericyclic reactions 9 hours

Definition and classification of pericyclic reactions: Phases, nodes and symmetry properties of molecular orbital's in ethylene,1,3-butadiene,1,3,5-hexatriene,alkylationandallylradical. Thermal and photochemical reactions. Electro cyclic reactions: Definition and examples, definitions of con and disrotation,Woodward-Hoffmann selection rules.(Correlation diagrams excluded) Cyclo addition reactions: Definition and examples, definitions of supra facial and antar facial addition, Woodward-Hoffmann selection rules. (Correlation diagrams excluded)

Unit-2 : Organic photochemistry 9hours

Jablonski diagram-singlet and triplet States Photochemistry of Carbonyl compounds $n-\pi^*$ and $\pi-\pi^*$ transitions, Norrish type-1 and type-2 reactions Paterno-Buchi reaction.

Unit-3: Retrosynthesis 9 hours

Important terms in Retro synthesis with examples-Disconnection, Target molecule, FGI, Synthon, Retrosynthetic analysis, chemo selectivity, region selectivity. Importance of Order of events in organic synthesis. Retrosynthetic analysis of the compounds: a) cyclohexene b)4-Nitro toluene c) Paracetamol.

Unit-4 : Synthetic Reactions 9 hours

Shapiro reaction, Stork - enamine reaction(only alkylation), Wittig reaction, Robinson annulation, Bailys-Hillman reaction, Heck reaction, Suzuki coupling. Synthesis of aldehydes and ketones using 1, 3-Dithiane.

Unit-5 : Reagents in Organic Chemistry 9 hours

Oxidizing agents:PCC,PDC,SeO2 (Riley oxidation), NBS.

Reducing agents : LiAlH4(with mechanism), LTBA, Metal-solvent reduction (Birch reduction), Catalytic reduction.

III. Suggested Co-Curricular Activities:

- 1) Training of students by related industrial experts.
- 2) Assignments, Seminars and Quiz (on related topics), collection of relevant videos and material.
- 3) Visits to laboratories, firms, research organizations etc.
- 4) Invited lectures and presentations on related topics by field / industrial experts.

IV. List of Reference books:

- 1) Pericyclic reactions by Ian Fleming, Second edition, Oxford University press.
- 2) Pericyclic Reactions- A Text book: Reactions, Applications and Theory by S.Sankararaman, WILEY-VCH.
- 3) Reaction Mechanism in Organic Chemistry by S.M. Mukherji and S.P.Singh, Revised edition, Trinity Press.
- 4) Pericyclic reactions A Mechanistic study by S.M.Mukherji, Macmillan India.
- 5) Organic synthesis : The disconnection approach by Stuart Warren, John Wiley&Sons.
- 6) Organic chemistry by Jonathan Clayden, Nick Greeves and Stuart Warren, Second edition, Oxford university press.
- 7) Reactions, Reagents and Rearrangements by S.N. Sanyal, Bharati Bhawan Publishers & Distributors

V - SEMESTER

Course - 14-A Synthetic Organic Chemistry

Credits: 01

V. Learning Outcomes:

On successful completion of this practical course, student shall be able to:

- 1) Perform the organic qualitative analysis for the detection of N, S and halogens using the green procedure.
- 2) Learn the procedure for the separation of mixture famine acids using paper Chromatography.
- 3) Prepare the TLC plates for TL chromatography.
- 4) Acquire skills in conducting column chromatography for the separation of dyes in the given mixture.

VI. Laboratory course syllabus:

- 1) Green procedure for organic qualitative analysis: Detection of N,S and halogens
- 2) Separation of given mixture of amino acids (glycine and phenyl alanine) using ascending paper chromatography.
- 3) Separation of a given dye mixture (methyl orange and methylene blue) using TLC (using alumina as adsorbent).
- 4) Separation of mixture of methyl orange and methylene blue by column chromatography
- 5) Separation of food dyes using Column Chromatography
- 6) Separation of triglycerides using TLC

VII. Suggested Co-Curricular Activities

- 1) Mandatory:(*Lab/field training of students by teacher:*(*lab:10+field:05*):
- 2) For Teacher: Training of students by the teacher in laboratory and field for not lessthan15 hours on the field techniques/skills of detection of N, Sand halogens using thegreen procedure, preparation of TLC plates, detection of organic compounds using Rf values in TLC / paper chromatography, loading of column, selection of solvent

system for column chromatography, separation of amino acids and dye mixture using chromatographic techniques.

- 3) For Students : Student shall visit a related industry/chemistry laboratory in universities/research organizations/private sector facility and observes the synthetic reactions. Write their observations and submit a hand written fieldwork/project workreportnotexceeding10 pages in the given format to the teacher.
- 4) Max marks for Fieldwork/project work Report:05.
- 5) Suggested Format for Fieldwork/project work: *Title page, student details, index page, details of place visited, observations, findings, and acknowledgements.*
- 6) Unit tests(IE).

VIII. List of Reference books :

- 1) VogelA.I.Practical Organic Chemistry, Longman Group Ltd.
- 2) Bansal R.K. Laboratory Manual of Organic Chemistry, Wiley-Eastern.
- Ahluwalia V. K. and Aggarwal R. Comprehensive Practical Organic Chemistry, University press.
- 4) MannF.G and Saunders B.C, Practical Organic Chemistry, Pearson Education.