V - SEMESTER

Course 13 B Green Chemistry and Nanotechnology.

Credits: 03

I. Learning Outcomes:

Students after successful completion of the course will be able to:

- 1. Understand the importance of Green chemistry and Green synthesis.
- 2. Engage in Microwave assisted organic synthesis.
- 3. Demonstrate skills using the alternative green solvents in synthesis.
- 4. Demonstrate and explain enzymatic catalysis .
- 5. Analyse alternative sources of energy and carry out green synthesis.
- 6. Carry out the chemical method of nanomaterial synthesis.

II. Syllabus

UNIT-I Green Chemistry: I

Introduction-Definition of green Chemistry,Need for green chemistry, Goals of Green chemistry Basic principles of green chemistry. Green synthesis- Evaluation of the type of the reaction i) Rearrangements (100% atom economic),ii)Addition reaction(100% atom economic). Organic reactions by Sonication method: apparatus required and examples of sono chemical reactions (Heck, Hundsdiecker and Wittig reactions).

UNIT- II Green Chemistry : Part- II

A) Selection of solvent:

i) Aqueous phase reactions

ii) Reactions in ionic liquids, Heck reaction, Suzuki reactions, epoxidation.

iii)Solid supported synthesis

B) Supercritical CO₂:Preparation, properties and applications, (decaffeination, drycleaning)

9hrs

9hrs

C) Green energy and sustainability.

UNIT-III Microwave and Ultrasound assisted green synthesis: 9hrs

Apparatus required, examples of MAOS (synthesis of fused anthroquinones, Leukart reductive amination of ketones)-Advantages and disadvantages of MAOS. Aldol condensation –Cannizzaro reaction - Diels-Alder reactions- Strecker's synthesis

UNIT-IV Green catalysis and Green synthesis 9hrs

Heterogeneous catalysis, use of zeolites, silica, alumina, supported catalysis-biocatalysis: Enzymes, microbes Phase transfer catalysis (micellar/surfactant)

1. Green synthesis of the following compounds : adipic acid, catechol, disodium imino diacetate (alternative Strecker's synthesis)

2. Microwave assisted reaction in water –Hoffmann elimination – methyl benzoate to benzoic acid – oxidation of toluene and alcohols–microwave assisted reactions in organic solvents. Diels-Alder reactions and decarboxylation reaction.

3. Ultrasound assisted reactions–sonochemical Simmons–Smith reaction(ultrasonic alternative to iodine)

UNIT – V Nanotechnology in Green chemistry 9hrs

Basic concepts of Nanoscience and Nanotechnology – Bottom-up approach and Top down approaches with examples – Synthesis of Nano materials – Classification of Nanomaterials – Properties and Application of Nanomaterials. Chemical and Physical properties of Nanoparticles – Physical synthesis of nanoparticles – Inert gas condensation - aerosol method

- Chemical Synthesis of nanoparticles – precipitation and co-precipitation method, sol-gel method.

III. Suggested Co-Curricular Activities:

- 1) Training of students by related industrial experts.
- 2) Assignments, Seminars, Group discussions, Debates and Quiz(on related topics).
- 3) Visits to laboratories, firms, research organizations etc.

- 4) Invited lectures and presentations on related topics by field/industrial experts.
- 5) Preparation of videos on tools, techniques and applications of Green chemistry and Nanosynthesis.

IV. List of Reference books:

- 1. Green Chemistry Theory and Practical. P.T.Anatas and J.C. Warner
- 2. Green Chemistry V.K. Ahluwalia Narosa, New Delhi.
- 3. Real world cases in Green Chemistry M.C. Cann and M.E. Connelly
- 4. Green Chemistry: Introductory Text M.Lancaster: Royal Society of Chemistry (London)
- Principles and practice of heterogeneous catalysis, Thomas J.M., Thomas M.J., John Wiley
- 6. Green Chemistry: Environmental friendly alternatives R S Sanghli and M.M Srivastava, Narosa Publications
- Nanotechnology: Health and Environmental Risks, Jo Anne Shatkin, CRC Press (2008).
- Green Processes for Nanotechnology: From Inorganic to Bioinspired Nanomaterials, Vladimir A. Basiuk, Elena V. Basiuk Springer (2015)
- 9. Web related references suggested by teacher.

V- SEMESTER

Course 13 B Green Chemistry and Nanotechnology

Credits: 01

V. Learning Outcomes:

On successful completion of this practical course, student shall be able to:

- 1. List out, identify and handle various equipment in the laboratory.
- 2. Learn the procedures of green synthesis.
- 3. Demonstrate skills in the preparation of Nanomaterials.
- 4. Acquire skills in Microwave assisted organic synthesis.
- 5. Perform some applications of Nanomaterials.

VI. Laboratory course Syllabus:

- 1. Identification of various equipment in the laboratory.
- 2. Acetylation of 1^0 amine by green method: Preparation of acetanilide
- 3. Rearrangement reaction in green conditions: Benzil Benzilic acid rearrangement
- 4. Radical coupling reaction: Preparation of 1,1-bis -2-naphthol
- 5. Green oxidation reaction: Synthesis of adipic acid
- 6. Preparation and characterization of biodiesel from vegetable oil/ waste cooking oil
- 7. Preparation and characterization of Nanoparticles of gold using tea leaves.
- 8. Benzoin condensation using Thiamine Hydrochloride as a catalyst instead of cyanide.
- 9. Photoreduction of Benzophenone to Benzopinacol in the presence of sunlight.

VII. Suggested Co-Curricular Activities:

Mandatory:(Lab /field training of students by teacher:(lab:10+field:05):

 For Teacher: Training of students by the teacher in the classroom or in the laboratory for not less than 15 hours on field related quantitative techniques for Enzymatic catalysis, Microwave assisted organic synthesis, Biodiesel preparation etc

- 2) For Student: Student shall visit a related industry / chemistry laboratory in universities / research organizations/private sector facility and observe various methods used for the analysis of water. Write their observations and submit ahand written fieldwork /project work report not exceeding10pages in the given format to the teacher.
- 3) Max marks for Field work / project work Report:05.
- 4) Suggested Format for Fieldwork/project work: *Title page, student details, index page, details of place visited, observations, findings and acknowledgements.*
- 5) Unit tests (IE).

VIII. List of Reference books:

- 1) Green Chemistry Theory and Practical. P.T.Anatas and J.C. Warner
- 2) Green Chemistry V.K. Ahluwalia Narosa, New Delhi.
- 3) Real world cases in Green Chemistry M.C. Cann and M.E. Connelly
- Green Chemistry: Introductory Text M.Lancaster: Royal Society of Chemistry (London)
- 5) Web related references suggested by teacher.