
UNIT-III: Relational Model

 Relational Model was proposed by E.F. Codd to model data in the form of relations

or tables.

 Relational model can represent as a table with columns and rows. Each row is known

as a tuple. Each table of the column has a name or attribute.

 After designing the conceptual model of Database using ER diagram, we need to

convert the conceptual model to relational model which can be implemented using

any RDBMS languages like Oracle SQL, MySQL etc.

Figure: Relational Model of the Database

Key Terms:

1. Tables – In the Relational model the, relations are saved in the table format.

 A table has two properties rows and columns.

 Rows represent records and columns represent attributes.
2. Attribute: Each column in a Table. Attributes are the properties which define a relation. e.g.,

Student_Rollno, Name, Marks,etc.
3. Tuple – It is nothing but a single row of a table, which contains a single record.
4. Attribute domain – Every attribute has some pre-defined value and scope which is known as

attribute domain. For Example, integer domain of attribute can only take integer values etc.
5. Relation key – Every row has one, two or multiple attributes, which is called relation key.
6. Degree or Arity: The total number of attributes present in the relation is called the degree of

the relation.
For Example, Arity of relation (Customer) = 5

7. Cardinality: Total number of rows or tuples present in the Table.
For Example, Cardinality of relation (Customer)= 7

8. Relation Schema (or Database Schema): A relation schema represents the name of the

relation, its attributes and type of attributes.

Table Name: Customer

ID Number(1)

Name Varchar(15)

Age Number(2)

Address Varchar(50)

Salary Number(10,2)

9. Relation instance – Relation instance is a finite set of tuples at a particular time in the

RDBMS system. Relation instances never have duplicate tuples.
 For Example, for the time being Customer table having 7 instances.

Properties of Relations:

 Name of the relation is distinct from all other relations.

 Each relation cell contains exactly one atomic (single) value

 Each attribute contains a distinct name

 Tuple has no duplicate value

Relational Integrity Constraints
 Relational Integrity constraints in DBMS are referred to conditions which must be

present for a valid relation.

 Integrity constraints are a set of rules. It is used to maintain the quality of information.

 Integrity constraints ensure that the data insertion, updating, and other processes have

to be performed in such a way that data integrity is not affected.

 Thus, integrity constraint is used to guard against accidental damage to the database.

Some of the Constraints are as follows:

1. Domain constraints

 Domain constraints can be defined as the definition of a valid set of values for an

attribute.

 The data type of domain includes string, character, integer, time, date, currency, etc.

The value of the attribute must be available in the corresponding domain.

2. Entity integrity constraints

 The entity integrity constraint states that primary key value can't be null.

 This is because the primary key value is used to identify individual rows in relation

and if the primary key has a null value, then we can't identify those rows.

 A table can contain a null value other than the primary key field.

3. Referential Integrity Constraints

 A referential integrity constraint is specified between two tables.

 In the Referential integrity constraints, if a foreign key in Table 1 refers to the

Primary Key of Table 2, then every value of the Foreign Key in Table 1 must be null

or be available in Table 2.

4. Key constraints

 Keys are the entity set that is used to identify an entity within its entity set uniquely.

 An entity set can have multiple keys, but out of which one key will be the primary

key. A primary key can contain a unique and not null value in the relational table.

Operations in Relational Model

Four basic operations performed on relational database model are

Insert, update, delete and select.

 Insert is used to insert data into the relation

 Delete is used to delete tuples from the table.

 Modify allows you to change the values of some attributes in existing tuples.

 Select allows you to choose a specific range of data.

Whenever one of these operations are applied, integrity constraints specified on the relational

database schema must never be violated.

Insert Operation

The insert operation gives values of the attribute for a new tuple which should be inserted

into a relation.

Update Operation

You can see that in the below-given relation table CustomerName= „Apple‟ is updated from

Inactive to Active.

Delete Operation

To specify deletion, a condition on the attributes of the relation selects the tuple to be deleted.

In the above-given example, CustomerName= “Apple” is deleted from the table.

The Delete operation could violate referential integrity if the tuple which is deleted is

referenced by foreign keys from other tuples in the same database.

Select Operation

In the above-given example, CustomerName=”Amazon” is selected.

Dr Edgar F Codd Rules

Dr E.F.Codd, also known to the world as the „Father of Database Management Systems‟ had

propounded 12 rules which are in-fact 13 in number. The rules are numbered from zero to twelve. His

twelve rules are fondly called „E.F.Codd‟s Twelve Commandments‟.

 If a management system or software follows any of 5-6 rules proposed by E.F.Codd,

it qualifies to be a Database Management System (DBMS).

 If a management system or software follows any of 7-9 rules proposed by E.F.Codd,

it qualifies to be a semi-Relational Database Management System (semi- RDBMS).

 If a management system or software follows 9-12 rules proposed by E.F. Codd, it

qualifies to be a complete Relational Database Management System (RDBMS).

Here is brief note on E.F Codd‟s twelve rules:

Rule 0 − Foundation rule

The database must be in relational form. So that the system can handle the database through

its relational capabilities.

Rule 1: Information Rule

A database contains various information, and this information must be stored in each

cell of a table in the form of rows and columns.

https://www.guru99.com/introduction-to-database-sql.html

Rule 2: Guaranteed Access Rule

Every single or precise data (atomic value) may be accessed logically from a

relational database using the combination of primary key value, table name, and

column name.

Rule 3: Systematic treatment of NULL

Null has several meanings, it can mean missing data, not applicable or no value. It

should be handled consistently. Also, Primary key must not be null, ever. Expression

on NULL must give null.

Rule 4: Active/Dynamic Online Catalog based on the relational model

It represents the entire logical structure of the descriptive database that must be stored

online and is known as a database dictionary. It authorizes users to access the

database and implement a similar query language to access the database.

Rule 5: Powerful and Well-Structured Language

One well-structured language must be there to provide all manners of access to the

data stored in the database. Example: SQL, etc. If the database allows access to the

data without the use of this language, then that is a violation.

Rule 6: View Updation Rule

All the view that are theoretically updatable should be updatable by the system as

well.

Rule 7: Relational Level Operation

There must be Insert, Delete, and Update operations at each level of relations. Set

operation like Union, Intersection and minus should also be supported.

Rule 8: Physical Data Independence Rule

All stored data in a database or an application must be physically independent to

access the database. Each data should not depend on other data or an application. If

data is updated or the physical structure of the database is changed, it will not show

any effect on external applications that are accessing the data from the database.

Rule 9: Logical Data Independence Rule

It is similar to physical data independence. It means, if any changes occurred to the

logical level (table structures), it should not affect the user's view (application). For

example, suppose a table either split into two tables, or two table joins to create a

single table, these changes should not be impacted on the user view application.

Rule 10: Integrity Independence

The database should be able to enforce its own integrity rather than using other

programs. Key and Check constraints, trigger etc, should be stored in Data Dictionary.

This also make RDBMS independent of front-end.

Rule 11: Distribution Independence Rule

The distribution independence rule represents a database that must work properly,

even if it is stored in different locations and used by different end-users. Suppose a

user accesses the database through an application; in that case, they should not be

aware that another user uses particular data, and the data they always get is only

located on one site. The end users can access the database, and these access data

should be independent for every user to perform the SQL queries.

Rule 12: Non-subversion Rule

If low level access is allowed to a system it should not be able to subvert or bypass

integrity rules to change the data. This can be achieved by some sort of looking or

encryption.

Functional Dependencies

Functional Dependency (FD) determines the relation of one attribute to another attribute in

a database management system (DBMS) system.

 Functional dependency helps you to maintain the quality of data in the database.

 A functional dependency is denoted by an arrow →. The functional dependency of X

on Y is represented by X → Y.

 Functional Dependency plays a vital role to find the difference between good and bad

database design.

X → Y

 The left side of FD is known as a Determinant/Antecedent, the right side of the

production is known as a Dependent/Consequent.

Types of Functional Dependencies:

Trivial functional dependency

 A → B has trivial functional dependency if B is a subset of A.

 The following dependencies are also trivial like: A → A, B → B

Non-trivial functional dependency

 A → B has a non-trivial functional dependency if B is not a subset of A.

 When A intersection B is NULL, then A → B is called as complete non-trivial.

Inference Rule (IR):

 The inference rule is a type of assertion. It can apply to a set of FD(functional dependency)

to derive other FD.

 Using the inference rule, we can derive additional functional dependency from the initial set.

 The Armstrong's axioms are the basic inference rule.

 Armstrong's axioms are used to conclude functional dependencies on a relational database.

The Functional dependency has 6 types of inference rules:

1. Reflexive Rule (IR1)

In the reflexive rule, if Y is a subset of X, then X determines Y.

i.e., If X ⊇ Y then X → Y

2. Augmentation Rule (IR2)

The augmentation is also called as a partial dependency. In augmentation, if X determines

Y, then XZ determines YZ for any Z.

i.e., If X → Y then XZ → YZ

3. Transitive Rule (IR3)

In the transitive rule, if X determines Y and Y determine Z, then X must also determine Z.

i.e., If X → Y and Y → Z then X → Z

4. Union Rule (IR4)

Union rule says, if X determines Y and X determines Z, then X must also determine Y and Z.

i.e., If X → Y and X → Z then X → YZ

5. Decomposition Rule (IR5)

Decomposition rule is also known as project rule. It is the reverse of union rule.

This Rule says, if X determines Y and Z, then X determines Y and X determines Z

separately.

i.e., If X → YZ then X → Y and X → Z

6. Pseudo transitive Rule (IR6)

In Pseudo transitive Rule, if X determines Y and YZ determines W, then XZ determines W.

i.e., If X → Y and YZ → W then XZ → W

Keys in Relational Database Management system

 Keys play an important role in the relational database.

 It is used to uniquely identify any record or row of data from the table. It is also used

to establish and identify relationships between tables.

For example, ID is used as a key in the Student table because it is unique for each student.

In the PERSON table, passport_number, license_number and SSN are keys since they are

uniquefor each person.

1. Super Key

Super key is an attribute or set of attributes that has to identify or derive all the attributes of a

Relation.

Table: Employee

Emp_SSN Emp_Number Emp_Name

--------- ---------- --------

123456789 226 Steve

999999321 227 Ajeet

888997212 228 Chaitanya

777778888 229 Robert

The above table has following super keys. All of the following sets of super key are able to

uniquely identify a row of the employee table.

I. {Emp_SSN}

II. {Emp_Number}

III. {Emp_SSN, Emp_Number}

IV. {Emp_SSN, Emp_Name}

V. {Emp_SSN, Emp_Number, Emp_Name}

VI. {Emp_Number, Emp_Name}

2. Candidate key

A candidate key is an attribute or set of attributes if and only if:

i) It has to derive all the attributes of the relation (or it has to identify a

unique record / Tuple in a relation) and

ii) It should be a Minimal Subset of super keys.

 Except for the primary key, the remaining attributes are considered a candidate key.

 The candidate keys are as strong as the primary key.

For example: In the EMPLOYEE table, Employee_ID is best suited for the primary key. The

rest of the attributes, like SSN, Passport_Number, License_Number, etc., are considered a

candidate key.

3. Primary Key:

 The PRIMARY KEY constraint uniquely identifies each record in a table.

 Primary keys must contain UNIQUE values, and cannot contain NULL values.

 A table can have only ONE primary key; and in the table, this primary key can consist

of single or multiple columns (fields).

 There is no significance between Candidate and Primary key, but the primary key

selection is based on requirements and developers.

4. Alternate key

The total number of the alternate keys is the total number of candidate keys minus the

primary key. The alternate key may or may not exist. If there is only one candidate key in a

relation, it does not have an alternate key.

For example, employee relation has two attributes, Employee_Id and PAN_No, that act as

candidate keys. In this relation, Employee_Id is chosen as the primary key, so the other

candidate key, PAN_No, acts as the Alternate key.

5. Foreign Key:

 The FOREIGN KEY constraint is used to maintain Parent-Child relationship i.e., to

maintain Referential Integrity.

 The FOREIGN KEY constraint is used to prevent actions that would destroy links

between tables.

 A FOREIGN KEY is a field (or collection of fields) in one table, that refers to the

PRIMARY KEY in another table.

 The table with the foreign key is called the child table, and the table with the primary

key is called the referenced or parent table.

 The FOREIGN KEY constraint prevents invalid data from being inserted into the

foreign key column, because it has to be one of the values contained in the parent

table.

https://www.w3schools.com/sql/sql_primarykey.asp

Prime (or) Key and Non-Key (or) Non-Prime Attributes

Prime attribute − An attribute, which is a part of the Candidate-key, is known as a prime

attribute.

Non-prime attribute − An attribute, which is not a part of the Candidate-key, is said to be a

non-prime attribute.

Example:
R (A,B,C,D,E,F) {

CF
EA
ECD
AB
}

Closure: (EC)+=ECDAFB
Candidate Key: EC
Prime attributes: {E,C}
Non-prime attributes: {A,B,D,F}

Normalization

Anomalies in DBMS

There are three types of anomalies that occur when the database is not normalized.

These are: Insertion, updation and deletion anomaly.

Let‟s take an example to understand this.

Suppose a manufacturing company stores the employee details in a table named employee

that has four attributes: emp_id for storing employee‟s id, emp_name for storing employee‟s

name, emp_address for storing employee‟s address and emp_dept for storing the department

details in which the employee works. At some point of time the table looks like this:

The above table is not normalized. We will see the problems that we face when a table is not

normalized.

Updation anomaly: In the above table we have two rows for employee Rick as he belongs to

two departments of the company. If we want to update the address of Rick then we have to

update the same in two rows or the data will become inconsistent. If somehow, the correct

address gets updated in one department but not in other then as per the database, Rick would

be having two different addresses, which is not correct and would lead to inconsistent data.

Insertion anomaly: Suppose a new employee joins the company, who is under training and

currently not assigned to any department then we would not be able to insert the data into the

table if emp_dept field doesn‟t allow nulls.

Deletion anomaly: Suppose, if at a point of time the company closes the department D890

then deleting the rows that are having emp_dept as D890 would also delete the information of

employee Maggie since she is assigned only to this department.

To overcome these anomalies, we need to normalize the data. In the next section we will

discuss about normalization.

 Normalization is the process of organizing the data in the database.

 Normalization is used to minimize the redundancy from a relation or set of relations.

 It is also used to eliminate the undesirable characteristics like Insertion, Update and

Deletion Anomalies.

 Normalization divides the larger table into the smaller table and links them using

relationship.

 Normal form indicates the amount of redundancy present in a relation and is used to

eliminate or reduce redundancy in database tables.

Types of Normal Forms

There are the four types of normal forms:

Figure: Venn Diagram Representation of Normal Forms

First Normal Form (1NF)

 A relation will be 1NF if it contains an atomic values i.e., it should not contain multi-

valued attributes.

 It states that an attribute of a table cannot hold multiple values. It must hold only

single-valued attribute.

 First normal form disallows the multi-valued attribute, composite attribute, and their

combinations.

Example: Relation EMPLOYEE is not in 1NF because of multi-valued attribute

EMP_PHONE.

EMPLOYEE table:

EMP_ID EMP_NAME EMP_PHONE EMP_STATE

14 John
7272826385,

9064738238
UP

20 Harry 8574783832 Bihar

12 Sam
7390372389,

8589830302
Punjab

The decomposition of the EMPLOYEE table into 1NF has been shown below:

EMP_ID EMP_NAME EMP_PHONE EMP_STATE

14 John 7272826385 UP

14 John 9064738238 UP

20 Harry 8574783832 Bihar

12 Sam 7390372389 Punjab

12 Sam 8589830302 Punjab

Second Normal Form (2NF)

A relation is in Second Normal Form (2NF):

i. relation must be in 1NF and

ii. It should not contain Partial-Dependency (P.D),

i.e., Non-Key attributes depending on the only the Part of the Candidate key is called

Partial Dependency.

Third Normal Form (3NF)

A relation is in Third Normal Form (3NF):

i. if it is in 2NF, and

ii. It should not have Transitive Dependency.

i.e., Non-Key attributes depending on the Non-Key attribute or Non-Key attribute

depending on Non-Key attribute along with Part of the Candidate Key is called

Transitive Dependency.

Boyce Codd normal form (BCNF)

A relation is in BCNF:

i. if it is in 3NF, and

ii. All the FD‟s are in Full-Dependency

 i.e., LHS of FD is depends on either a super key or Candidate Key.

 BCNF is the advance version of 3NF. It is stricter than 3NF.

 If a relation is in BCNF means it always has Zero redundancy.

 Every Binary Relation always in BCNF

Fourth Normal Form (4NF)

A relation R is in 4NF if and only if the following conditions are satisfied:

i. It should be in the Boyce-Codd Normal Form (BCNF) and

ii. The table should not have any Multi-valued Dependency.

i.e., if we consider AB, AC here A multi-determining B and C. So, 4NF involves

removal of Multi-Valued Dependencies.

Fifth Normal Form (5NF)

 The 5NF (Fifth Normal Form) is also known as project-join normal form.

 A relation is in Fifth Normal Form (5NF):

i. if it is in 4NF, and

ii. It should not have lossless decomposition into smaller

tables.

Relational Algebra

 Relational database systems are expected to be equipped with a query language that

can assist its users to query the database instances.

 Query Language is a technique of accessing data from the database. It‟s mainly of two

types :

1. Procedural Query Language: This is a formal way of accessing the database.

The information regarding what has to be accessed and how it has to be accessed

are provided along with the queries, so that the data can be accessed from the

database.

Examples: FORTRAN, COBOL, ALGOL, BASIC, C and Pascal.

Relational Algebra (RA) is a type of Procedural Query Language. It consists of a

set of operators which take one or two relations as input and a new relation is

provided as the output.

 RA is the component of relational query engine. RA also provides a

framework for query optimization.

 SQL queries are internally translated into RA operations first.

 Relational Algebra eliminates duplicate tuples from the result by default.

2. Non Procedural Query Language: This is an informal way of accessing the data

from the database.

 In the case of Non Procedural Query Language, information is required

only about what data has to be accessed from the database.

 SQL and Tuple Relational Calculus are types of Non Procedural Query

Language.

 Examples: SQL, PROLOG, LISP.

Procedural Language Non-Procedural Language

It is command-driven language. It is a function-driven language

It works through the state of machine.
It works through the mathematical

functions.

Its semantics are quite tough. Its semantics are very simple.

It returns only restricted data types and allowed

values.
It can return any data type or value

Overall efficiency is very high.
Overall efficiency is low as compared to

Procedural Language.

Size of the program written in Procedural

language is large.

Size of the Non-Procedural language

programs are small.

It is not suitable for time critical applications. It is suitable for time critical applications.

Iterative loops and Recursive calls both are used

in the Procedural languages.

Recursive calls are used in Non-

Procedural languages.

Types of Relational Algebra operations

Relational algebra is a procedural query language. It gives a step by step process to obtain the

result of the query. It uses operators to perform queries.

Select Operation (σ)

 It selects tuples that satisfy the given predicate from a relation.

 Notation: σp(r)

Where σ stands for selection predicate and r stands for relation. p is prepositional logic

formula which may use connectors like and, or, and not. These terms may use relational

operators like:=, ≠, ≥, < , >, ≤.

For example −

 σsubject = "database"(Books)

Output: Selects tuples from books where subject is 'database'.

 σsubject = "database" and price = "450"(Books)

Output: Selects tuples from books where subject is 'database' and 'price' is 450.

 σsubject = "database" and price = "450" or year > "2010"(Books)

Output: Selects tuples from books where subject is 'database' and 'price' is 450 or

those books published after 2010.

Project Operation (∏)

It projects column(s) that satisfy a given predicate.

Notation:∏A1, A2, An (r)

Where A1, A2 , An are attribute names of relation r.

Duplicate rows are automatically eliminated in a relation.

For example :

 ∏subject, author(Books)

Selects and projects columns named as subject and author from the relation Books.

Union Operation (∪)

It performs binary union between two given relations and is defined as:

 r∪ s = { t | t ∈ r or t ∈ s}

Notation: r U s

Where r and s are either database relations or relation result set (temporary relation).

For a union operation to be valid, the following conditions must hold −

 r, and s must have the same number of attributes.

 Attribute domains must be compatible.

 Duplicate tuples are automatically eliminated.

 ∏author(Books) ∪ ∏author(Articles)

Output: Projects the names of the authors who have either written a book or an article

or both.

Intersection Operation (∪)

It performs binary union between two given relations and is defined as:

 r∩ s = { t | t ∈ r or t ∈ s}

Notation: r ∩ s

Where r and s are either database relations or relation result set (temporary relation).

For a union operation to be valid, the following conditions must hold −

 r, and s must have the same number of attributes.

 Attribute domains must be compatible.

 Duplicate tuples are automatically eliminated.

 ∏author(Books) ∩ ∏author(Articles)

Output: Projects the names of the authors who have written a book and an article

both.

Set Difference (−)

The result of set difference operation is tuples, which are present in one relation but are not in

the second relation.

Notation: r − s

Finds all the tuples that are present in r but not in s.

 ∏author(Books) − ∏author(Articles)

Output: Provides the name of authors who have written books but not articles.

Cartesian Product (Χ)

Combines information of two different relations into one.

Notation: r Χ s

Where r and s are relations and their output will be defined as:

r Χ s = { q t | q ∈ r and t ∈ s}

 σauthor = 'tutorialspoint'(Books Χ Articles)

Output: Yields a relation, which shows all the books and articles written by

tutorialspoint.

Rename Operation (ρ)

The rename operation allows us to rename the output relation. 'Rename' operation is denoted

with small Greek letter rhoρ.

Notation: ρx (E)

Where the result of expression E is saved with name of x.

Advantages and Limitations of RA

Advantages:

 Relational algebra is based on the set theory which is a mathematical concept due to

which it has a scope of development.

 Like mathematics there can be many expressions for the same operation, in a similar

way if there are two relational algebraic expressions for the same operation then the

query optimizer will switch to the most efficient query.

 It is a high-level query language.

Limitations:

 Relational algebra cannot perform arithmetic operations.

 It is unable to do aggregation operations.

 Also, Transitive closure of a binary relation cannot be expressed.

 It cannot modify the data present in the database.

Relational Calculus

Before understanding Relational calculus in DBMS, we need to understand Procedural

Language and Declarative Language.

1. Procedural Language - Those Languages which clearly define how to get the

required results from the Database are called Procedural Language. Relational

algebra is a Procedural Language.

2. Declarative Language - Those Language that only cares about what to get from the

database without getting into how to get the results are called Declarative Language.

Relational Calculus is a Declarative Language.

So Relational Calculus is a Declarative Language that uses Predicate Logic or First-Order

Logic to determine the results from Database.

Relational Calculus is of Two Types:

1. Tuple Relational Calculus (TRC)

2. Domain Relational Calculus (DRC)

Tuple Relational Calculus (TRC)

 Tuple Relational Calculus in DBMS uses a tuple variable (t) that goes to each

row of the table and checks if the predicate is true or false for the given row.

 Depending on the given predicate condition, it returns the row or part of the

row.

Syntax:{ T | P(T)}

Where T is the tuple variable that runs over every Row, and P(T) is the predicate logic
expression or condition.

For Example: Customer Table

Customer_id Name Zip_code

1 Rohit 12345

2 Rahul 13245

3 Rohit 56789

4 Amit 12345

 Q:Write a TRC query to get all the data of customers whose zip code is 12345.

TRC Query:{T | T∈ Customer ∧T.Zipcode = 12345}or

TRC Query:{T| Customer (T) ∧ T [Zipcode] = 12345 }

Workflow of query - The tuple variable "T" will go through every tuple of the

Customer table. Each row will check whether the Cust_Zipcode is 12345 or not and

only return those rows that satisfies the Predicate expression condition.

The TRC expression above can be read as "Return all the tuple which belongs to

the Customer Table and whose Zipcode is equal to 12345."

 Result of the TRC expression above:

Customer_id Name Zip code

1 Rohit 12345

4. Amit 12345

Domain Relational Calculus (DRC)

Domain Relational Calculus uses domain Variables to get the column values required from

the database based on the predicate expression or condition.

The Domain realtional calculus expression syntax:

 {< X1, X2, X3,…..,Xn> | P (X1,X2,X3,….., Xn) }

 where,

< X1, X2, X3,…..,Xn>are domain variables used to get the column values

required, and P(X1, X2, X3,…..,Xn) is predicate expression or condition.

Q:Write a DRC query to get the data of all customers with Zip code 12345.

DRC query:{<x1,x2,x3>| <x1,x2>∈ Customer ∧ x3 = 12345 }

Workflow of Query: In the above query x1, x2, x3 (ordered) refers to the attribute or column

which we need in the result, and the predicate condition is that the first two domain variables

x1 and x2 should be present while matching the condition for each row and the third domain

variable x3 should be equal to 12345.

Result of the DRC query will be:

Customer_id Name Zip code

1 Rohit 12345

4 Amit 12345

Comparison between Tuple Relational Calculus (TRC) and Domain

Relational Calculus (DRC):

Tuple Relational Calculus (TRC) Domain Relational Calculus (DRC)

In TRS, the variables represent the tuples

from specified relation.

In DRS, the variables represent the value drawn

from specified domain.

A tuple is a single element of relation. In

database term, it is a row.

A domain is equivalent to column data type and

any constraints on value of data.

In this, filtering variable uses tuple of

relation.

In this, filtering is done based on the domain of

attributes.

Query cannot be expressed using a

membership condition.

Query can be expressed using a membership

condition.

The QUEL or Query Language is a query

language related to it,

The QBE or Query-By-Example is query

language related to it.

Notation :

{T | P (T)} or {T | Condition (T)}

Notation :

{ a1, a2, a3, …, an | P (a1, a2, a3, …, an)}

Summary about TRC and DRC:

 Relational Calculus in DBMS tells us what we want from the database and not how to

get that.

 Relational Calculus is a Declarative Language.

 TRC uses tuple variable and checks every Row with the Predicate expression

condition.

 DRC uses domain variables and returns the required attribute or column based on the

condition.

 For any requirement both, TRC and DRC can be written.

References

1. Abraham Silberschatz, Henry F. Korth, S. Sudarshan,“Database System Concepts”,

Seventh Edition.

2. Jeffrey A. Hoffer, V. Ramesh, HeikkiTopi, “Modern Database Management”, Tenth

Edition.

3. Raghu Ramakrishnan, “Database Management Systems”.

